A Developer’s Guide to Build Your OpenAI Operator on macOS

If you’re poking around with OpenAI Operator on Apple Silicon (or just want to build AI agents that can actually use a computer like a human), this is for you. I’ve written a guide to walk you through getting started with cua-agent, show you how to pick the right model/loop for your use case, and share some code patterns that’ll get you up and running fast.

Here is the full guide: https://www.trycua.com/blog/build-your-own-operator-on-macos-2

What is cua-agent, really?

Think of cua-agent as the toolkit that lets you skip the gnarly boilerplate of screenshotting, sending context to an LLM, parsing its output, and safely running actions in a VM. It gives you a clean Python API for building “Computer-Use Agents” (CUAs) that can click, type, and see what’s on the screen. You can swap between OpenAI, Anthropic, UI-TARS, or local open-source models (Ollama, LM Studio, vLLM, etc.) with almost zero code changes.

Setup: Get Rolling in 5 Minutes

Prereqs:

Python 3.10+ (Conda or venv is fine) macOS CUA image already set up (see Part 1 if you haven’t) API keys for OpenAI/Anthropic (optional if you want to use local models) Ollama installed if you want to run local models

Install everything:

bashpip install « cua-agent[all] »

Or cherry-pick what you need:

bashpip install « cua-agent[openai] » # OpenAI pip install « cua-agent[anthropic] » # Anthropic pip install « cua-agent[uitars] » # UI-TARS pip install « cua-agent[omni] » # Local VLMs pip install « cua-agent[ui] » # Gradio UI

Set up your Python environment:

bashconda create -n cua-agent python=3.10 conda activate cua-agent # or python -m venv cua-env source cua-env/bin/activate

Export your API keys:

bashexport OPENAI_API_KEY=sk-… export ANTHROPIC_API_KEY=sk-ant-…

Agent Loops: Which Should You Use?

Here’s the quick-and-dirty rundown:

Loop Models it Runs When to Use It OPENAI OpenAI CUA Preview Browser tasks, best web automation, Tier 3 only ANTHROPIC Claude 3.5/3.7 Reasoning-heavy, multi-step, robust workflows UITARS UI-TARS-1.5 (ByteDance) OS/desktop automation, low latency, local OMNI Any VLM (Ollama, etc.) Local, open-source, privacy/cost-sensitive

TL;DR:

Use OPENAI for browser stuff if you have access. Use UITARS for desktop/OS automation. Use OMNI if you want to run everything locally or avoid API costs.

Your First Agent in ~15 Lines

pythonimport asyncio from computer import Computer from agent import ComputerAgent, LLMProvider, LLM, AgentLoop async def main(): async with Computer() as macos: agent = ComputerAgent( computer=macos, loop=AgentLoop.OPENAI, model=LLM(provider=LLMProvider.OPENAI) ) task = « Open Safari and search for ‘Python tutorials’ » async for result in agent.run(task): print(result.get(‘text’)) if __name__ == « __main__ »: asyncio.run(main())

Just drop that in a file and run it. The agent will spin up a VM, open Safari, and run your task. No need to handle screenshots, parsing, or retries yourself1.

Chaining Tasks: Multi-Step Workflows

You can feed the agent a list of tasks, and it’ll keep context between them:

pythontasks = [ « Open Safari and go to github.com », « Search for ‘trycua/cua’ », « Open the repository page », « Click on the ‘Issues’ tab », « Read the first open issue » ] for i, task in enumerate(tasks): print(f »nTask {i+1}/{len(tasks)}: {task} ») async for result in agent.run(task): print(f » → {result.get(‘text’)} ») print(f »✅ Task {i+1} done »)

Great for automating actual workflows, not just single clicks1.

Local Models: Save Money, Run Everything On-Device

Want to avoid OpenAI/Anthropic API costs? You can run agents with open-source models locally using Ollama, LM Studio, vLLM, etc.

Example:

bashollama pull gemma3:4b-it-q4_K_M pythonagent = ComputerAgent( computer=macos_computer, loop=AgentLoop.OMNI, model=LLM( provider=LLMProvider.OLLAMA, name= »gemma3:4b-it-q4_K_M » ) )

You can also point to any OpenAI-compatible endpoint (LM Studio, vLLM, LocalAI, etc.)1.

Debugging & Structured Responses

Every action from the agent gives you a rich, structured response:

Action text Token usage Reasoning trace Computer action details (type, coordinates, text, etc.)

This makes debugging and logging a breeze. Just print the result dict or log it to a file for later inspection1.

Visual UI (Optional): Gradio

If you want a UI for demos or quick testing:

pythonfrom agent.ui.gradio.app import create_gradio_ui if __name__ == « __main__ »: app = create_gradio_ui() app.launch(share=False) # Local only

Supports model/loop selection, task input, live screenshots, and action history.
Set share=True for a public link (with optional password)1.

Tips & Gotchas

You can swap loops/models with almost no code changes. Local models are great for dev, testing, or privacy. .gradio_settings.json saves your UI config-add it to .gitignore. For UI-TARS, deploy locally or on Hugging Face and use OAICOMPAT provider. Check the structured response for debugging, not just the action text.

submitted by /u/sandropuppo to r/learnmachinelearning
[link] [comments]


Commentaires

Laisser un commentaire

Votre adresse e-mail ne sera pas publiée. Les champs obligatoires sont indiqués avec *