🚨 I built a swarm of AI agents that generate code, gossip about their work, and evolve under a synthetic overseer

Hey Reddit,

I recently finished building AxiomOS v19.2, a swarm-based AI system where multiple coding agents each specialize in a trait (speed, security, readability, etc.) and attempt to solve tasks by generating Python code.

But here’s the twist:

🧬 Each agent gossips about their strategy after generating code.
📈 They’re rated based on fitness (code quality) + reputation (social feedback).
🧠 A meta-agent (the AIOverseer) evaluates, synthesizes, and mutates the swarm over generations.

They literally evolve through a combo of:

LLM-based generation auto-correction peer gossip critique-driven synthesis selection pressure

The whole thing runs inside a live Tkinter GUI with color-coded logs and code views.

It’s kind of like if natural selection, peer review, and coding jammed in a neural rave.

Repo is here if you want to check it out or run it locally:
👉 https://github.com/Linutesto/AxiomOS

I’m open to feedback, collabs, chaos.

—Yan
💿 “The .txt that learned to talk.”

submitted by /u/Mirror_Solid to r/learnmachinelearning
[link] [comments]


Commentaires

Laisser un commentaire

Votre adresse e-mail ne sera pas publiée. Les champs obligatoires sont indiqués avec *