๐—•๐—ผ๐—ผ๐˜€๐˜๐—ถ๐—ป๐—ด ๐—ฉ๐—ฒ๐—ฐ๐˜๐—ผ๐—ฟ ๐—ฆ๐—ฒ๐—ฎ๐—ฟ๐—ฐ๐—ต ๐—ฃ๐—ฒ๐—ฟ๐—ณ๐—ผ๐—ฟ๐—บ๐—ฎ๐—ป๐—ฐ๐—ฒ ๐˜„๐—ถ๐˜๐—ต ๐—™๐—”๐—œ๐—ฆ๐—ฆ: ๐Ÿฐ๐Ÿฏ๐Ÿฌ๐˜… ๐—ฆ๐—ฝ๐—ฒ๐—ฒ๐—ฑ๐˜‚๐—ฝ ๐—”๐—ฐ๐—ต๐—ถ๐—ฒ๐˜ƒ๐—ฒ๐—ฑ

FAISS

When working with image-based recommendation systems, managing a large number of image embeddings can quickly become computationally intensive. During inference, calculating distances between a query vector and every other vector in the database leads to high latency โ€” especially at scale.

To address this, I implemented ๐—™๐—”๐—œ๐—ฆ๐—ฆ (๐—™๐—ฎ๐—ฐ๐—ฒ๐—ฏ๐—ผ๐—ผ๐—ธ ๐—”๐—œ ๐—ฆ๐—ถ๐—บ๐—ถ๐—น๐—ฎ๐—ฟ๐—ถ๐˜๐˜† ๐—ฆ๐—ฒ๐—ฎ๐—ฟ๐—ฐ๐—ต) in a recent project at Vizuara. FAISS significantly reduces latency with only a minimal drop in accuracy, making it a powerful solution for high-dimensional similarity search.

FAISS operates on two key indexing strategies:

๐—œ๐—ป๐—ฑ๐—ฒ๐˜…๐—™๐—น๐—ฎ๐˜๐—Ÿ๐Ÿฎ: Performs exact L2 distance matching, much faster than brute-force methods.

๐—œ๐—ป๐—ฑ๐—ฒ๐˜…๐—œ๐—ฉ๐—™ (๐—œ๐—ป๐˜ƒ๐—ฒ๐—ฟ๐˜๐—ฒ๐—ฑ ๐—™๐—ถ๐—น๐—ฒ ๐—œ๐—ป๐—ฑ๐—ฒ๐˜…๐—ถ๐—ป๐—ด): Groups similar features into clusters, allowing searches within only the most relevant subsets โ€” massively improving efficiency.

In our implementation, we achieved a ๐Ÿฐ๐Ÿฏ๐Ÿฌ๐˜… ๐—ฟ๐—ฒ๐—ฑ๐˜‚๐—ฐ๐˜๐—ถ๐—ผ๐—ป ๐—ถ๐—ป ๐—น๐—ฎ๐˜๐—ฒ๐—ป๐—ฐ๐˜† with only a ๐Ÿฎ% ๐—ฑ๐—ฒ๐—ฐ๐—ฟ๐—ฒ๐—ฎ๐˜€๐—ฒ ๐—ถ๐—ป ๐—ฎ๐—ฐ๐—ฐ๐˜‚๐—ฟ๐—ฎ๐—ฐ๐˜†. This clearly demonstrates the value of trading off a small amount of precision for substantial performance gains.

To help others understand how FAISS works, I created a simple, visual animation and made the source code publicly available: https://github.com/pritkudale/Code_for_LinkedIn/blob/main/FAISS_Animation.ipynb

For more AI and machine learning insights, check out ๐—ฉ๐—ถ๐˜‡๐˜‚๐—ฎ๐—ฟ๐—ฎโ€™๐˜€ ๐—”๐—œ ๐—ก๐—ฒ๐˜„๐˜€๐—น๐—ฒ๐˜๐˜๐—ฒ๐—ฟ: https://www.vizuaranewsletter.com/?r=502twn

submitted by /u/Ambitious-Fix-3376 to r/learnmachinelearning
[link] [comments]


Commentaires

Laisser un commentaire

Votre adresse e-mail ne sera pas publiรฉe. Les champs obligatoires sont indiquรฉs avec *